Local compactness and nonvanishing for weakly singular nonlocal quadratic forms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular and Totally Singular Generalised Quadratic Forms

In this paper we present a decomposition theorem for generalised quadratic forms over a division algebra with involution in characteristic 2. This is a generalisation of a decomposition result on quadratic forms in characteristic 2 from [3] and extends a generalisation of the Witt decomposition theorem for nonsingular forms to cover forms that may be singular.

متن کامل

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

Global Compactness Results for Nonlocal Problems

We obtain a Struwe type global compactness result for a class of nonlinear nonlocal problems involving the fractional p−Laplacian operator and nonlinearities at critical growth.

متن کامل

Shelah’s Singular Compactness Theorem

We present Shelah’s famous theorem in a version for modules, together with a self-contained proof and some examples. This exposition is based on lectures given at CRM in

متن کامل

Local Densities of 2-adic Quadratic Forms

In this paper, we give an explicit from formula for the local density number of representing a two by two 2-integral matrix T by a quadratic 2-integral lattice L over Z2. The non-dyadic case was dealt in a previous paper. The special case when L is a (maximal) lattice in the space of trace zero elements in a quaternion algebra over Q2 yields a clean and interesting formula, which matches up per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis

سال: 2020

ISSN: 0362-546X

DOI: 10.1016/j.na.2019.01.021